Any feedback?
Please rate this page
(all_enzymes.php)
(0/150)

BRENDA support

1.8.1.4: dihydrolipoyl dehydrogenase

This is an abbreviated version!
For detailed information about dihydrolipoyl dehydrogenase, go to the full flat file.

Word Map on EC 1.8.1.4

Reaction

protein N6-(dihydrolipoyl)lysine
+
NAD+
=
protein N6-(lipoyl)lysine
+
NADH
+
H+

Synonyms

apicoplast E3, CDS, CIP50, coronin-interacting protein, dehydrogenase, lipoamide, dehydrolipoate dehydrogenase, DHLDH, DHLipDH, diaphorase, dihydrolipoamide dehydrogenase, dihydrolipoamide dehydrogenase E3, dihydrolipoamide:NAD+ oxidoreductase, dihydrolipoic dehydrogenase, dihydrolipomide dehydrogenase, dihydrolipoyl dehydrogenase, DLD, DLD1, Dld2, DLDH, DLDH dehydrogenase, DLDH diaphorase, DLDH2, DT-diaphorase, E3, E3 component, E3 component of 2-oxoglutarate dehydrogenase complex, E3 component of acetoin cleaving system, E3 component of alpha keto acid dehydrogenase complexes, E3 component of pyruvate and 2-oxoglutarate dehydrogenases complexes, E3 component of pyruvate complex, E3 lipoamide dehydrogenase, E3 protein component of 2-oxoacid dehydrogenase multienzyme complexes, E3 subunit of the alpha-ketoglutarate dehydrogenase complex, EC 1.6.4.3, Glycine cleavage system L protein, Glycine oxidation system L-factor, hDLDH, hE3, hLADH, L-protein, LAD, LADH, LDH, LDP-Glc, LDP-Val, LipDH, lipoamide dehydrogenase, lipoamide dehydrogenase (NADH), lipoamide dehydrogenase C, lipoamide dehydrogenase2, lipoamide oxidoreductase (NADH), lipoamide reductase, lipoamide-dehydrogenase-valine, lipoate dehydrogenase, lipoic acid dehydrogenase, lipoyl dehydrogenase, LPD, LPD-GLC, LPD-VAL, LPD1, LPD2, Lpd3, LpdA, LpdC, LpdG, LpdV, More, mtLPD2, NAD(P)H:lipoamide oxidoreductase, NADH dehydrogenase, NADH diaphorase, NADH:lipoamide oxidoreductase, nicotinamide adenine dinucleotide diaphorase, ORF-E3, pdhD, pdhL, PfaE3, rhDLDH, TAase, ubiquinone reductase

ECTree

     1 Oxidoreductases
         1.8 Acting on a sulfur group of donors
             1.8.1 With NAD+ or NADP+ as acceptor
                1.8.1.4 dihydrolipoyl dehydrogenase

Inhibitors

Inhibitors on EC 1.8.1.4 - dihydrolipoyl dehydrogenase

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1,3-bis(2-chloroethyl)-1-nitrourea
-
after reduction of the oxidized form of enzyme to the two-electron-reduced state
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
-
at higher concentrations (2 mM) significantly inhibits the lipoamide dehydrogenase activity
1-methyl-4-phenylpyridinium
-
at lower concentrations (1 mM) as compared to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine significantly inhibits the lipoamide dehydrogenase activity
10-(2-dimethylaminopropyl)-dibenzothiazine cation radical
-
60% inactivation after 10 min incubation and 79% after 30 min using the myeloperoxidase system, 72% inactivation after 10 min incubation using the horseradish peroxidase system
10-(2-methyl,3-dimethylaminopropyl)-dibenzothiazine cation radical
-
90% inactivation after 10 min and 30 min incubation using the myeloperoxidase system, 94% inactivation after 10 min incubation using the horseradish peroxidase system
10-(3-dimethylaminopropyl)-dibenzothiazine cation radical
-
87% inactivation after 10 min incubation and 89% after 30 min using the myeloperoxidase system, 94% inactivation after 10 min incubation using the horseradish peroxidase system
2-amino-4-hydroxy-6,7-dimethyl-5,6,7,8-tetrahydropteridine hydrochloride
-
inhibition of NADH-lipoamide oxidoreductase activity, no effect on diaphorase activity and transhydrogenase activity
2-amino-4-hydroxy-6,7-dimethyl-7,8-dihydropteridine
-
inhibition of NADH-lipoamide oxidoreductase activity, no effect on diaphorase activity and transhydrogenase activity
2-amino-4-hydroxy-6-methyl-7,8-dihydropteridine
-
inhibition of NADH-lipoamide oxidoreductase activity, no effect on diaphorase activity and transhydrogenase activity
2-chloro-10-(3-dimethylaminopropyl)-dibenzothiazine cation radical
-
45% inactivation after 10 min incubation and 75% after 30 min using the myeloperoxidase system, 89% inactivation after 10 min incubation using the horseradish peroxidase system
2-chloro-10-[3-(1-methyl-4-piperazinyl)-propyl]-dibenzothiazine cation radical
-
54% inactivation after 10 min incubation and 80% after 30 min using the myeloperoxidase system, 90% inactivation after 10 min incubation using the horseradish peroxidase system
2-chloro-10-[3-[1-(2-hydroxyethyl)-4-piperazinyl]propyl]-dibenzothiazine cation radical
-
42% inactivation after 10 min incubation and 69% after 30 min using the myeloperoxidase system, 79% inactivation after 10 min incubation using the horseradish peroxidase system
2-methylmercapto-10-[2-(1-methyl-2-piperidinyl)-ethyl]-dibenzothiazine cation radical
-
77% inactivation after 10 min incubation and 82% after 30 min using the myeloperoxidase system, 85% inactivation after 10 min incubation using the horseradish peroxidase system
2-propionyl-10-(3-dimethylaminopropyl)-dibenzothiazine cation radical
-
11% inactivation after 10 min incubation and 32% after 30 min using the myeloperoxidase system, 83% inactivation after 10 min incubation using the horseradish peroxidase system
2-trifluoromethyl-10-[3-(1-methyl-4-piperazinyl)propyl]-dibenzothiazine cation radical
-
5% inactivation after 10 min incubation and 16% after 30 min using the myeloperoxidase system, 67% inactivation after 10 min incubation using the horseradish peroxidase system
2-trifluoromethyl-10-[3-(dimethylamino)propyl]-dibenzothiazine cation radical
-
2% inactivation after 10 and 30 min incubation using the myeloperoxidase system, 16% inactivation after 10 min incubation using the horseradish peroxidase system
2-trifluoromethyl-10-[3-[1-(2-hydroxyethyl)4-piperazinyl]propyl]-dibenzothiazine cation radical
-
1% inactivation after 10 min incubation and 8% after 30 min using the myeloperoxidase system, 61% inactivation after 10 min incubation using the horseradish peroxidase system
2-[8-(2,4-dimethoxybenzoyl)-4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-3-yl]-N-[3-(trifluoromethyl)benzyl]acetamide
-
5-methoxyindole-2-carboxylic acid
Angeli's salt
-
at 2 mM, induces a 90% loss in DLDH diaphorase activity
arsenite
Cd2+
-
in presence of NADH, inhibition is reversed by dithiols and less effectively by monothiols
chlorpromazine
-
0.1 mM, 75% inactivation, in the presence of 0.5 U/ml myeloperoxidase and 0.1 mM H2O2 at pH 7.4, 94% inactivation, in the presence of 0.005 mM myoglobin and 0.25 mM H2O2 at pH 7.4, 89% inactivation in the presence of 0.5 U/ml horseradish peroxidase and 0.2 mM H2O2 at pH 7.4
cyanide
slight inhibition; slight inhibition; slight inhibition
Diethylamine NONOate
-
induces 71% loss in diaphorase activity at 10 mM, but does not induce any activity loss at 2 mM
dihydrolipoamide
-
diisopropyl fluorophosphate
diphenyleneiodonium
an inhibitor of flavoproteins and heme-containing proteins, effectively inhibits phenazine reduction in vitro; an inhibitor of flavoproteins and heme-containing proteins, effectively inhibits phenazine reduction in vitro; an inhibitor of flavoproteins and heme-containing proteins, effectively inhibits phenazine reduction in vitro
diphenyleneiodonium chloride
Fe2+
-
at high concentrations has significant inhibitory effect on the lipoamide dehydrogenase activity
fluphenazine
-
0.1 mM, 53% inactivation, in the presence of 0.005 mM myoglobin and 0.25 mM H2O2 at pH 7.4, 61% inactivation in the presence of 0.5 U/ml horseradish peroxidase and 0.2 mM H2O2 at pH 7.4
folic acid
-
inhibition of NADH-lipoamide oxidoreductase activity, no effect on diaphorase activity and transhydrogenase activity
Guanidine-HCl
-
4°C: 50% inactivation at 1.0 M, complete inactivation at 1.6 M, reversible
H2O2
-
enzyme is inactivated by complex III- but not complex I-derived reactive oxygen species, and the accompanying loss of activity due to the inactivation can be restored by cysteine and glutathione. H2O2 instead of superoxide anion is responsible for the inactivation, and protein sulfenic acid formation is associated with the loss of enzymatic activity
Hg2+
1 mM shows strong inhibitory effect on recombinant rBfmBC activity (more than 80% inhibition)
iodoacetic acid
-
in presence of NADH or dihydrolipoamide
isobiopterin
-
inhibition of NADH-lipoamide oxidoreductase activity, no effect on diaphorase activity and transhydrogenase activity
N-ethylmaleimide
N-[2-(2,4-dichlorophenyl)ethyl]-2-[8-(2,4-dimethoxybenzoyl)-4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-3-yl]acetamide
most potent inhibitor, noncompetitive versus NADH, NAD+, and lipoamide
NAD(P)+
-
product inhibition
p-Aminophenyldichloroarsine
p-[(bromoacetyl)-amino]phenyl arsenoxide
-
irreversible active site directed inactivation
Pb2+
1 mM shows strong inhibitory effect on recombinant BfmBC activity (more than 80% inhibition)
PCMB
-
0.1 mM, 50% inhibition
perphenazine
-
0.1 mM, 69% inactivation, in the presence of 0.5 U/ml myeloperoxidase and 0.1 mM H2O2 at pH 7.4, 75% inactivation, in the presence of 0.005 mM myoglobin and 0.25 mM H2O2 at pH 7.4, 79% inactivation in the presence of 0.5 U/ml horseradish peroxidase and 0.2 mM H2O2 at pH 7.4
phenothiazine cation radicals
-
irreversible inactivation dependent on time, radical structure, and radical production enzyme system, radicals are produced by reaction of myeloperoxidase or horse radish peroxidase on the phenothiazines promazine, trimeprazine, thioridazine, chlorpromazine, prochlorperazine, promethazine, and others, in presence of H2O2, protection by radical scavengers e.g. thiol compounds, amino acids and peptides, pyridine dinucleotides like NADH, or best by ascorbate and trolox, overview
potassium phosphate
-
when purified DLDH is eluted directly into potassium phosphate buffer, the enzymatic activity rapidly decreases
prochlorperazine
-
0.1 mM, 80% inactivation, in the presence of 0.5 U/ml myeloperoxidase and 0.1 mM H2O2 at pH 7.4, 85% inactivation, in the presence of 0.005 mM myoglobin and 0.25 mM H2O2 at pH 7.4, 80% inactivation in the presence of 0.5 U/ml horseradish peroxidase and 0.2 mM H2O2 at pH 7.4
promazine
-
0.1 mM, 89% inactivation, in the presence of 0.5 U/ml myeloperoxidase and 0.1 mM H2O2 at pH 7.4, 93% inactivation, in the presence of 0.005 mM myoglobin and 0.25 mM H2O2 at pH 7.4, 94% inactivation in the presence of 0.5 U/ml horseradish peroxidase and 0.2 mM H2O2 at pH 7.4, 94% inhibition in the presence of 0.2 mM NADH, 0.5 U/ml myeloperoxidase and 0.1 mM H2O2 after 10 min incubation
Promethazine
-
0.1 mM, 79% inactivation, in the presence of 0.5 U/ml myeloperoxidase and 0.1 mM H2O2 at pH 7.4, 51% inactivation, in the presence of 0.005 mM myoglobin and 0.25 mM H2O2 at pH 7.4, 72% inactivation in the presence of 0.5 U/ml horseradish peroxidase and 0.2 mM H2O2 at pH 7.4
propericyazine
-
0.1 mM, 40% inactivation, in the presence of 0.005 mM myoglobin and 0.25 mM H2O2 at pH 7.4
propionylpromazine
-
0.1 mM, 32% inactivation, in the presence of 0.5 U/ml myeloperoxidase and 0.1 mM H2O2 at pH 7.4, 88% inactivation, in the presence of 0.005 mM myoglobin and 0.25 mM H2O2 at pH 7.4, 83% inactivation in the presence of 0.5 U/ml horseradish peroxidase and 0.2 mM H2O2 at pH 7.4
S-nitrosocysteine
-
induces a 62% loss in diaphorase activity at 2 mM and an 88% loss at 10 mM
S-nitrosoglutathione
-
induces 84% loss in diaphorase activity at 10 mM, but does not induce any activity loss at 2 mM
thioridazine
-
0.1 mM, 82% inactivation, in the presence of 0.5 U/ml myeloperoxidase and 0.1 mM H2O2 at pH 7.4, 97% inactivation, in the presence of 0.005 mM myoglobin and 0.25 mM H2O2 at pH 7.4, 85% inactivation in the presence of 0.5 U/ml horseradish peroxidase and 0.2 mM H2O2 at pH 7.4, 85% inhibition in the presence of 0.1 mM NADH, 0.5 U/ml myeloperoxidase and 0.1 mM H2O2 after 10 min incubation
Trifluoperazine
-
0.1 mM, 16% inactivation, in the presence of 0.5 U/ml myeloperoxidase and 0.1 mM H2O2 at pH 7.4, 72% inactivation, in the presence of 0.005 mM myoglobin and 0.25 mM H2O2 at pH 7.4, 67% inactivation in the presence of 0.5 U/ml horseradish peroxidase and 0.2 mM H2O2 at pH 7.4
triflupromazine
-
0.1 mM, 68% inactivation, in the presence of 0.005 mM myoglobin and 0.25 mM H2O2 at pH 7.4, 16% inactivation in the presence of 0.5 U/ml horseradish peroxidase and 0.2 mM H2O2 at pH 7.4
trimeprazine
-
0.1 mM, 90% inactivation, in the presence of 0.5 U/ml myeloperoxidase and 0.1 mM H2O2 at pH 7.4, 90% inactivation, in the presence of 0.005 mM myoglobin and 0.25 mM H2O2 at pH 7.4, 94% inactivation in the presence of 0.5 U/ml horseradish peroxidase and 0.2 mM H2O2 at pH 7.4
valproyl-CoA
-
competitive inhibitor, 0.5-1.0 mM inhibit DLDH activity
valproyl-dephosphoCoA
-
uncompetitive inhibitor, 0.5-1.0 mM inhibit DLDH activity
additional information
-